Abstract

Studies of biodiversity in the Maghreb have revealed high genetic diversity and divergent genetic lineages among many taxa including squamates. Geographic barriers such as the Atlas Mountains are one of the key factors promoting genetic differentiation and the high levels of endemism. The lizard-fingered gecko Saurodactylus brosseti is endemic to Morocco. Its range includes both sides of the Atlas Mountains, and although high diversity was previously identified within the species, much of the range was unsampled. To understand the evolutionary and biogeographical history of this species, we used mitochondrial and nuclear DNA sequence data from 64 populations sampled across the entire species range. We employed phylogenetic methods based on gene trees and species trees as well as a time calibrated Bayesian genealogy and coalescent species delimitation approaches. We uncovered four highly divergent and allopatric mitochondrial lineages that did not share haplotypes at variable nuclear loci, suggesting the four groups have been evolving independently since the Miocene, according to our molecular dating estimates. These results coupled with the geographic pattern of genetic diversity suggest a possible role of the Atlas Mountains for the divergence observed between the four lineages of S. brosseti, while each lineage probably later underwent several episodes of fragmentation followed by (re-) expansion during Pleistocene climatic oscillations. Bayesian species delimitation analysis indicates that the four lineages may well be distinct species but we suggest that detailed morphological analyses are needed prior to taxonomic changes. The four lineages represent ancient independent evolutionary units, and deserve conservation management as distinct entities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call