Abstract

BackgroundTectonic, volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes. Elucidate the evolutionary history of freshwater fishes permits to infer theories on the biotic and geological evolution of a region, which can further be applied to understand processes of population divergence, speciation and for conservation purposes. The freshwater ecosystems in Central Mexico are characterized by their genesis dynamism, destruction, and compartmentalization induced by intense geologic activity and climatic changes since the early Miocene. The endangered goodeid Zoogoneticus quitzeoensis is widely distributed across Central México, thus making it a good model for phylogeographic analyses in this area.ResultsWe addressed the phylogeography, evolutionary history and genetic structure of populations of Z. quitzeoensis through a sequential approach, based on both microsatellite and mitochondrial cytochrome b sequences. Most haplotypes were private to particular locations. All the populations analysed showed a remarkable number of haplotypes. The level of gene diversity within populations was d = 0.987 (0.714 – 1.00). However, in general the nucleotide diversity was low, π = 0.0173 (0.0015 – 0.0049). Significant genetic structure was found among populations at the mitochondrial and nuclear level (ΦST = 0.836 and FST = 0.262, respectively). We distinguished two well-defined mitochondrial lineages that were separated ca. 3.3 million years ago (Mya). The time since expansion was ca. 1.5 × 106 years ago for Lineage I and ca. 860,000 years ago for Lineage II. Also, genetic patterns of differentiation, between and within lineages, are described at different historical timescales.ConclusionOur mtDNA data indicates that the evolution of the different genetic groups is more related to ancient geological and climatic events (Middle Pliocene, ca. 3.3 Mya) than to the current hydrographic configuration of the basins. In general, mitochondrial and nuclear data supported the same relationships between populations, with the exception of some reduced populations in highly polluted basins (Lower Lerma River), where the effects of genetic drift are suggested by the different analyses at the nuclear and mitochondrial level. Further, our findings are of special interest for the conservation of this endangered species.

Highlights

  • Tectonic, volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes

  • The freshwater ecosystems in Central Mexico are characterized by their genesis dynamism, destruction, and compartmentalization induced by intense geologic activity and climatic changes since the early Miocene

  • The freshwater ecosystems of Central Mexico are characterized by their genesis dynamism, destruction, and compartmentalization induced by intense tectonic and volcanic activity

Read more

Summary

Introduction

Volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes. Tectonic, volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes [2] As these events reflect the geological development of landscapes, the phylogeographic studies of freshwater fishes permit to infer the biotic and geological evolution of a region [3]. The tectonic activity of the Mesa Central started in the Miocene and reached its climax during the Pliocene-Pleistocene and has continued intermittently to the present, mainly in the TMVB region [5] This intense geologic activity has generated a complex hydrologic system, which is the promoter of continuous processes of dispersion and vicariance. This region is an interesting model for the understanding of the evolution and development of the biotic components of complex areas [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.