Abstract
Cells maintain the specific lipid composition of distinct organelles by vesicular transport as well as non-vesicular lipid trafficking via lipid transport proteins. Oxysterol-binding proteins (OSBPs) are a family of lipid transport proteins that transfer lipids at various membrane contact sites (MCSs). OSBPs have been extensively investigated in human and yeast cells where 12 have been identified in Homo sapiens and 7 in Saccharomyces cerevisiae. The evolutionary relationship between these well-characterized OSBPs is still unclear. By reconstructing phylogenies of eukaryote OSBPs, we show that the ancestral Saccharomycotina had four OSBPs, the ancestral fungus had five OSBPs, and the ancestral animal had six OSBPs, whereas the shared ancestor of animals and fungi as well as the ancestral eukaryote had only three OSBPs. Our analyses identified three undescribed ancient OSBP orthologues, one fungal OSBP (Osh8) lost in the lineage leading to yeast, one animal OSBP (ORP12) lost in the lineage leading to vertebrates, and one eukaryotic OSBP (OshEu) lost in both the animal and fungal lineages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.