Abstract

The effectiveness of control measures against the diffusion of the COVID-19 pandemic is grounded on the assumption that people are prepared and disposed to cooperate. From a strategic decision point of view, cooperation is the unreachable strategy of the prisoner’s dilemma game, where the temptation to exploit the others and the fear to be betrayed by them drives the people behavior, which eventually results fully defective. In this work, we integrate the SIRS epidemic model with the replicator equation of evolutionary games in order to study the interplay between the infection spreading and the propensity of people to become cooperative under the pressure of the epidemic. We find that the developed model possesses several steady states, including fully or partially cooperative ones and that the presence of such states allows to take the disease under control. Moreover, assuming a seasonal variation of the infection rate, the system presents rich dynamics, including chaotic behavior and epidemic extinction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.