Abstract
The use of fuzzy time series has attracted considerable attention in studies that aim to make forecasts using uncertain information. However, most of the related studies do not use a learning mechanism to extract valuable information from historical data. In this study, we propose an evolutionary fuzzy forecasting model, in which a learning technique for a fuzzy relation matrix is designed to fit the historical data. Taking into consideration the causal relationships among the linguistic terms that are missing in many existing fuzzy time series forecasting models, this method can naturally smooth the defuzzification process, thus obtaining better results than many other fuzzy time series forecasting models, which tend to produce stepwise outcomes. The experimental results with two real datasets and four indicators show that the proposed model achieves a significant improvement in forecasting accuracy compared to earlier models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.