Abstract

Tensegrity structures are stable 3-dimensional mechanical structures which maintain their form due to an intricate balance of forces between disjoint rigid elements and continuous tensile elements. Tensegrity structures can give rise to lightweight structures with high strength-to-weight ratios and their utility has been appreciated in architecture, engineering and recently robotics. However, the determination of connectivity patterns of the rigid and tensile elements which lead to stable tensegrity is challenging. Available methods are limited to the use of heuristic guidelines, hierarchical design based on known components, or mathematical methods which can explore only a subset of the space. This paper investigates the use of evolutionary algorithms in the form-finding of tensegrity structures. It is shown that an evolutionary algorithm can be used to explore the space of arbitrary tensegrity structures which are difficult to design using other methods, and determine new, non-regular forms. It suggests that evolutionary algorithms can be used as the basis for a general design methodology for tensegrity structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.