Abstract
Julia sets are fractal subsets of the complex plane defined by a simple iterative algorithm. Julia sets are specified by a single complex parameter and their appearances are indexed by the Mandelbrot set. This study presents a simple generalization of the quadratic Julia set that requires two complex parameters. The generalization causes the Mandelbrot set indexing the generalized Julia sets to become 4-dimensional and hence difficult to use as a visual index. An evolutionary algorithm is used to search the space of generalized quadratic Julia sets. A type of fitness function is presented that permits the artist exert some control over the appearance of the resulting Julia sets. The impact of different versions of the fitness function on the resulting Julia sets is explored. It is found that the designed fitness functions do give substantial control over the appearance of the resulting fractals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.