Abstract

BackgroundDrosophila nasuta nasuta (2n = 8) and Drosophila nasuta albomicans (2n = 6) are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila. Interracial hybridization between these two races has given rise to new karyotypic strains called Cytorace 1 and Cytorace 2 (first phase). Further hybridization between Thailand strain of D. n. albomicans and D. n. nasuta of Coorg strain has resulted in the evolution of two more Cytoraces, namely Cytorace 3 and Cytorace 4 (second phase). The third phase Cytoraces (Cytorace 5 to Cytorace 16) have evolved through interracial hybridization among first, second phase Cytoraces along with parental races. Each of these Cytoraces is composed of recombined genomes of the parental races. Here, we have made an attempt to systematically assess the impact of hybridization on karyotypes, morphometric and life history traits in all 16 Cytoraces.ResultsThe results reveal that in most cases, the newly evolved Cytoraces, with different chromosome constitutions, exhibit decreased body size, better fitness and live longer than their parents. Particularly, Cytorace 5, 6 and 8 have evolved with very much higher range values of quantitative traits than the parents and other Cytoraces, which suggests the role of transgressive segregation in the evolution of these Cytoraces.ConclusionThus, the rapid divergence recorded in the chromosomes, karyotypes, body size and fitness traits of Cytoraces exhibit the early event of recombinational raciation / speciation in the evolution of the Cytoraces under laboratory conditions.

Highlights

  • Drosophila nasuta nasuta (2n = 8) and Drosophila nasuta albomicans (2n = 6) are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila

  • Chromosomes of Cytoraces The comparative account of D. n. nasuta, D. n. albomicans, F1 and Cytoraces chromosomes were presented in our earlier publications (Table 1) [16,19,17,20]

  • One of the advantages in the karyotypic analysis of these races and hybrids is that the chromosomes of D. n. nasuta and D. n. albomicans can identified based on their size and heterochromatin content

Read more

Summary

Introduction

Drosophila nasuta nasuta (2n = 8) and Drosophila nasuta albomicans (2n = 6) are a pair of sibling allopatric chromosomal cross-fertile races of the nasuta subgroup of immigrans species group of Drosophila. Interracial hybridization between these two races has given rise to new karyotypic strains called Cytorace 1 and Cytorace 2 (first phase). The third phase Cytoraces (Cytorace 5 to Cytorace 16) have evolved through interracial hybridization among first, second phase Cytoraces along with parental races. Speciation genetics concentrates on populations or races that have been recently separated from each other and has not yet attained the status of species. It may not be possible to understand the process of speciation by looking at the finished products [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.