Abstract
Abstract This paper considers the problem of rapid and robust speaker adaptation in automatic speech recognition (ASR) systems. We propose an approach using combination of eigenspace-based maximum likelihood linear regression (EMLLR) and evolutionary algorithms. To find the best solution for the coefficients estimation problem, we suggest using genetic algorithm (GA) for rapid speaker adaptation. This is due to the fact that genetic algorithms are not as sensitive as expectation maximization (EM) algorithm to the amount of adaptation data. Experimental results on TIMIT database illustrate that genetic algorithm, using random individuals in first population, leads to up to 1.03% improvement in phoneme recognition rate. Moreover, we show that if the first population contains coefficients initially estimated by maximum likelihood criterion, further improvement can be achieved as well. However, the amount of adaptation data does not have considerable effect on the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.