Abstract
We consider an asexual population evolving on rugged fitness landscapes which are defined on the multidimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations, some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t(-2) as in the quasispecies problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.