Abstract
We have determined the entire nucleotide sequence of the human immunoglobulin kappa locus, comprising a total of 1,010,706 nucleotides. The 76 Vkappa genes found by a hybridization-based approach and their classification in 7 families were confirmed. A Vkappa orphon located near the locus was also sequenced. In addition, we identified 55 novel Vkappa relics and truncated pseudogenes, which establish 5 new families. Among these 132 Vkappa genes, 46 have open reading frames. According to the databases and the literature, 32 unique Vkappa genes and 5 identical gene pairs form VJ-joints, 27 unique genes and 4 gene pairs are transcribed, and 25 unique genes and 4 gene pairs produce functional proteins. The Vkappa gene locus contains a 360-kb inverted duplication, which harbors 118 Vkappa genes. A comparison of the duplicated Vkappa genes suggests positive selection on the complementarity-determining regions of the duplicated genes by point mutations. The entire duplication unit was divided into 13 blocks, each of which has its distinct nucleotide sequence identity to its duplication counterpart (98.1 - 99.9 %). An inversion-mediated mechanism is suggested to generate the high-homology blocks. Based on the homology blocks and the mutation rates, the inverted duplication is assumed to have taken place approximately 5 million years ago. An orphon Vkappa gene near the kappa locus and a cluster of five Vkappa orphons on chromosome 22 have no counterparts within the kappa locus. This suggests possible mechanisms of the transposition of orphon Vkappa genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.