Abstract

Length variation due to tandem repeats is now recognized as a common feature of animal mitochondrial DNA; however, the evolutionary dynamics of repeated sequences are not well understood. Using phylogenetic analysis, predictions of three models of repeat evolution were tested for arrays of 260-bp repeats in the cyprinid fish Cyprinella spiloptera. Variation at different nucleotide positions in individual repeats supported different models of repeat evolution. One set of characters included several nucleotide variants found in all copies from a limited number of individuals, while the other set included an 8-bp deletion found in a limited number of copies in all individuals. The deletion and an associated nucleotide change appear to be the result of a deterministic, rather than stochastic, mutation process. Parallel origins of repeat arrays in different mitochondrial lineages, possibly coupled with a homogenization mechanism, best explain the distribution of nucleotide variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.