Abstract

BackgroundNatural selection and genetic drift are major forces responsible for temporal genetic changes in populations. Furthermore, these evolutionary forces may interact with each other. Here we study the impact of an ongoing adaptive process at the molecular genetic level by analyzing the temporal genetic changes throughout 40 generations of adaptation to a common laboratory environment. Specifically, genetic variability, population differentiation and demographic structure were compared in two replicated groups of Drosophila subobscura populations recently sampled from different wild sources.ResultsWe found evidence for a decline in genetic variability through time, along with an increase in genetic differentiation between all populations studied. The observed decline in genetic variability was higher during the first 14 generations of laboratory adaptation. The two groups of replicated populations showed overall similarity in variability patterns. Our results also revealed changing demographic structure of the populations during laboratory evolution, with lower effective population sizes in the early phase of the adaptive process. One of the ten microsatellites analyzed showed a clearly distinct temporal pattern of allele frequency change, suggesting the occurrence of positive selection affecting the region around that particular locus.ConclusionGenetic drift was responsible for most of the divergence and loss of variability between and within replicates, with most changes occurring during the first generations of laboratory adaptation. We also found evidence suggesting a selective sweep, despite the low number of molecular markers analyzed. Overall, there was a similarity of evolutionary dynamics at the molecular level in our laboratory populations, despite distinct genetic backgrounds and some differences in phenotypic evolution.

Highlights

  • Natural selection and genetic drift are major forces responsible for temporal genetic changes in populations

  • Significant differences were observed between loci for both allele number and expected heterozygosity in each generation, with microsatellite locus dsub14 presenting the lowest mean allele number and the lowest expected heterozygosity in all generations analyzed [see Additional file 1: Genetic Variability of AR and TW populations]

  • We observed a depletion of genetic variability and an increase in genetic differentiation among our laboratory populations through time

Read more

Summary

Introduction

Natural selection and genetic drift are major forces responsible for temporal genetic changes in populations. These evolutionary forces may interact with each other. Evolution in a novel environment involves a complex array of processes that produces both genetic and phenotypic changes. The extent of these changes varies as a function of several forces, such as the selective pressures imposed and the magnitude of genetic drift, as well as the (page number not for citation purposes). Directional selection can reduce effective population size, enhancing the impact of genetic drift on genetic variability within populations and differentiation among them (see [6])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call