Abstract
We describe the dynamics of an evolutionary model for a population subject to a strong Allee effect. The model assumes that the carrying capacity k(u), inherent growth rate r(u), and Allee threshold a(u) are functions of a mean phenotypic trait u subject to evolution. The model is a plane autonomous system that describes the coupled population and mean trait dynamics. We show bounded orbits equilibrate and that the Allee basin shrinks (and can even disappear) as a result of evolution. We also show that stable non-extinction equilibria occur at the local maxima of k(u) and that stable extinction equilibria occur at local minima of r(u). We give examples that illustrate these results and demonstrate other consequences of an Allee threshold in an evolutionary setting. These include the existence of multiple evolutionarily stable, non-extinction equilibria, and the possibility of evolving to a non-evolutionary stable strategy (ESS) trait from an initial trait near an ESS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.