Abstract
Optimization in dynamic environments is a challenging but important task since many real-world optimization problems are changing over time. Evolutionary computation and swarm intelligence are good tools to address optimization problems in dynamic environments due to their inspiration from natural self-organized systems and biological evolution, which have always been subject to changing environments. Evolutionary optimization in dynamic environments, or evolutionary dynamic optimization (EDO), has attracted a lot of research effort during the last 20 years, and has become one of the most active research areas in the field of evolutionary computation. In this paper we carry out an in-depth survey of the state-of-the-art of academic research in the field of EDO and other meta-heuristics in four areas: benchmark problems/generators, performance measures, algorithmic approaches, and theoretical studies. The purpose is to for the first time (i) provide detailed explanations of how current approaches work; (ii) review the strengths and weaknesses of each approach; (iii) discuss the current assumptions and coverage of existing EDO research; and (iv) identify current gaps, challenges and opportunities in EDO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.