Abstract

This study used phylogenetic analyses of mitochondrial cytochrome b sequences to investigate genetic diversity within three broadly co-distributed freshwater fish genera (Galaxias, Pseudobarbus and Sandelia) to shed some light on the processes that promoted lineage diversification and shaped geographical distribution patterns. A total of 205 sequences of Galaxias, 177 sequences of Pseudobarbus and 98 sequences of Sandelia from 146 localities across nine river systems in the south-western Cape Floristic Region (South Africa) were used. The data were analysed using phylogenetic and haplotype network methods and divergence times for the clades retrieved were estimated using *BEAST. Nine extremely divergent (3.5–25.3%) lineages were found within Galaxias. Similarly, deep phylogeographic divergence was evident within Pseudobarbus, with four markedly distinct (3.8–10.0%) phylogroups identified. Sandelia had two deeply divergent (5.5–5.9%) lineages, but seven minor lineages with strong geographical congruence were also identified. The Miocene-Pliocene major sea-level transgression and the resultant isolation of populations in upland refugia appear to have driven widespread allopatric divergence within the three genera. Subsequent coalescence of rivers during the Pleistocene major sea-level regression as well as intermittent drainage connections during wet periods are proposed to have facilitated range expansion of lineages that currently occur across isolated river systems. The high degree of genetic differentiation recovered from the present and previous studies suggest that freshwater fish diversity within the south-western CFR may be vastly underestimated, and taxonomic revisions are required.

Highlights

  • Understanding the processes that promoted diversification and shaped the distributions of extant taxa is a central question of evolutionary studies [1,2,3,4,5,6,7,8]

  • The present study uses comparative phylogeographic and biogeographic approaches to examine the evolutionary drivers of diversification and the processes that gave rise to extant geographical distributions of co-distributed stream fishes from the south-western Cape Floristic Region (CFR) of South Africa

  • The present study extends this previous research by undertaking finer-scale geographic sampling of co-distributed stream fishes belonging to three genera, Galaxias, Pseudobarbus and Sandelia, across 11 river systems in the south-western CFR (Fig 1; Appendix S1), with the aim of assessing the roles of vicariance and population expansion in driving diversification and shaping the present-day distributions of these groups

Read more

Summary

Introduction

Understanding the processes that promoted diversification and shaped the distributions of extant taxa is a central question of evolutionary studies [1,2,3,4,5,6,7,8]. Studies have cited a plethora of processes, such as global sea-level changes, climatic oscillations, orogenic events, river capture and ecological gradients as the major drivers of diversification and geographical distribution of many freshwater assemblages [5,6,7,8,9,10,11,12,13,14,15,16]. The present study uses comparative phylogeographic and biogeographic approaches to examine the evolutionary drivers of diversification and the processes that gave rise to extant geographical distributions of co-distributed stream fishes from the south-western Cape Floristic Region (CFR) of South Africa. River capture events and isolation by major mountain barriers have been traditionally proposed as the dominant processes that had major impacts on diversification and distribution patterns of stream fishes in the CFR [27,28]. A recently identified galaxiid displays phylogeographic patterns indicative of recent range expansion across major mountain ranges and drainage divides [8], while other taxa exhibit a pattern consistent with a model of river confluences during periods of low sea-levels [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.