Abstract

Intracellular microsporidian Nosema mylitta infects Indian wild silkworm Antheraea mylitta causing pebrine disease. Genetic structure and phylogeny of N. mylitta are analysed using nucleotide variability in 5S ribosomal DNA and intergenic spacer (IGS) sequence from 20 isolates collected from Southern, Northern and Central regions of Jharkhand State. Nucleotide diversity (π) and genetic differentiation Gst were highest in the Central isolates whereas lowest in the North. Among the isolates, absence of nucleotides, transitions and transversions were observed. Haplotyping showed nucleotide variability at 83 positions in IGS and 13 positions in 5S rDNA. Haplotype-based genetic differentiation was 0.96 to 0.97 whereas nucleotide sequence-based genetic differentiation was higher (Ks = 22.29) between Southern and Central isolates. Bottleneck analysis showed negative value for Tajima's D and other summary statistics revealing induction of loss of rare alleles and population explosion. From IGS, 17 ancestral sequences were inferred by Network algorithm. Core of nine closely related nodes having ancient nucleotides and peripheral nodes with highly divergent nucleotides were derived. Most diverged peripheral haplotype was Bero (H11) from the Central region whereas Deoghar (H3) of the Northern region diverged early. Phylogeny of N. mylitta grouped Southern and Northern isolates together revealed weak phylogenetic signal for these locations. Phylogeny of N. mylitta with Nosema sp. infecting other lepidopterans clustered N. mylitta isolates with N. antheraea and N. philosamiae of China indicating genetic similarity whereas other species were dissimilar showing diversity irrespective of country of origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call