Abstract

Vertebrate morphology has been evolutionarily modified by natural and/or artificial selection. The morphological variation of goldfish is a representative example. In particular, the twin-tail strain of ornamental goldfish shows highly diverged anal and caudal fin morphology: bifurcated anal and caudal fins. Recent molecular developmental genetics research revealed that a stop codon mutation in one of the two recently duplicated chordin genes is important for the highly diverged fin morphology of twin-tail goldfish. However, some issues still need to be discussed in the context of evolutionary developmental biology (evo-devo). For example, the bifurcated anal and caudal fins of twin-tail goldfish provided early researchers with insights into the origin of paired fins (pectoral and pelvic fins), but no subsequent researchers have discussed this topic. In addition, although the fossil jawless vertebrate species Euphanerops is also known to have had a bifurcated anal fin, how the bifurcated anal fin of twin-tail goldfish is related to that of fossil jawless vertebrate species has never been investigated. In this review, we present an overview of the early anatomical and embryological studies of twin-tail goldfish. Moreover, based on the similarity of embryonic features between the secondarily bifurcated competent stripe in twin-tail goldfish and the trunk bilateral competent stripes in conventional gnathostomes, we hypothesized that they share the same molecular developmental mechanisms. We also postulate that the bifurcated anal fin of Euphanerops might be caused by the same type of modification of dorsal-ventral patterning that occurs in the twin-tail goldfish, unlike the previously suggested evolutionary process that required the co-option of paired fin developmental mechanisms. Understanding the molecular developmental genetics of twin-tail goldfish allows us to further investigate the evolutionary developmental mechanisms of the origin of paired fins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.