Abstract

Enhancing expression levels of a target protein is an important goal in synthetic biology. A widely used strategy is to integrate multiple copies of genes encoding a target protein into a host organism genome. Integrating highly similar sequences, however, can induce homologous recombination between them, resulting in the ultimate reduction of the number of integrated genes. We propose a method for designing multiple protein-coding sequences (i.e. CDSs) that are unlikely to induce homologous recombination, while encoding the same protein. The method, which is based on multi-objective genetic algorithm, is intended to design a set of CDSs whose nucleotide sequences are as different as possible and whose codon usage frequencies are as highly adapted as possible to the host organism. We show that our method not only successfully designs a set of intended CDSs, but also provides insight into the trade-off between nucleotide differences among gene copies and codon usage frequencies. Our method, named Tandem Designer, is available as a web-based application at http://tandem.trahed.jp/tandem/ . : terai_goro@intec.co.jp or asai@k.u-tokyo.ac.jp. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.