Abstract
Elongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes through translation of formins in eukaryotes.
Highlights
Cytoskeletal remodeling in response to signal transduction pathways is critical to many cellular processes
The translational regulator eukaryotic translation initiation factor 5A (eIF5A) is required for actin cable assembly during Drosophila dorsal closure (DC)
The hole is subsequently sealed by a complex process called DC, which involves the formation of an actomyosin contractile cable at the leading edges of the dorsal-most epidermal (DME) cells, the emission of cellular protrusions from opposite sides of the epidermis that interdigitate and zip the dorsal opening at its corners, and the apical constriction and apoptosis of AS cells that facilitates the occlusion of the hole
Summary
Cytoskeletal remodeling in response to signal transduction pathways is critical to many cellular processes. Our results revealed that eIF5A regulates the protein levels of Diaphanous (Dia), and that this formin is required during DC downstream of eIF5A. Depletion of active eIF5A decreases the levels of Dia and migration in mouse neural stem cells (NSCs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.