Abstract

Meiosis-specific Rec114-Mei4 and Mer2 complexes are thought to enable Spo11-mediated DNA double-strand break (DSB) formation through a mechanism that involves DNA-dependent condensation. However, the structure, molecular properties, and evolutionary conservation of Rec114-Mei4 and Mer2 are unclear. Here, we present AlphaFold models of Rec114-Mei4 and Mer2 complexes supported by nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), and mutagenesis. We show that dimers composed of the Rec114 C terminus form α-helical chains that cup an N-terminal Mei4 α helix, and that Mer2 forms a parallel homotetrameric coiled coil. Both Rec114-Mei4 and Mer2 bind preferentially to branched DNA substrates, indicative of multivalent protein-DNA interactions. Indeed, the Rec114-Mei4 interaction domain contains two DNA-binding sites that point in opposite directions and drive condensation. The Mer2 coiled-coil domain bridges coaligned DNA duplexes, likely through extensive electrostatic interactions along the length of the coiled coil. Finally, we show that the structures of Rec114-Mei4 and Mer2 are conserved across eukaryotes, while DNA-binding properties vary significantly. This work provides insights into the mechanism whereby Rec114-Mei4 and Mer2 complexes promote the assembly of the meiotic DSB machinery and suggests a model in which Mer2 condensation is the essential driver of assembly, with the DNA-binding activity of Rec114-Mei4 playing a supportive role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.