Abstract

Adult molluscs produce shells with diverse morphologies and ornamentations, different colour patterns and microstructures. The larval shell, however, is a phenotypically more conserved structure. How do developmental and evolutionary processes generate varying diversity at different life-history stages within a species? Using live imaging, histology, scanning electron microscopy and transcriptomic profiling, we have described shell development in a heteroconchian bivalve, the Antarctic clam, Laternula elliptica, and compared it to adult shell secretion processes in the same species. Adult downstream shell genes, such as those encoding extracellular matrix proteins and biomineralization enzymes, were largely not expressed during shell development. Instead, a development-specific downstream gene repertoire was expressed. Upstream regulatory genes such as transcription factors and signalling molecules were largely conserved between developmental and adult shell secretion. Comparing heteroconchian data with recently reported pteriomorphian larval shell development data suggests that, despite being phenotypically more conserved, the downstream effectors constituting the larval shell 'tool-kit' may be as diverse as that of adults. Overall, our new data suggest that a larval shell formed using development-specific downstream effector genes is a conserved and ancestral feature of the bivalve lineage, and possibly more broadly across the molluscs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.