Abstract

The proportion of eukaryotic genomes composed of active or formerly active mobile elements (MEs) is known to vary widely across lineages, but the explanations for why remain largely unknown. Given that ME activity, like other forms of mutation, is thought to be (on average) slightly deleterious in terms of phenotypic effects, understanding the widespread proliferation of MEs in host genomes requires an evolutionary framework. To better develop such a framework, we review the spectrum of resolutions to the genetic conflict between MEs and their hosts: inactivation of MEs due to mutation accumulation, negative selection (or lack thereof) against hosts with high ME loads, silencing of MEs (by hosts or MEs), ME domestication by their hosts, and the horizontal transfer of MEs to new hosts. We also highlight ecological and evolutionary theory from which ME researchers might borrow in order to explain large-scale patterns of ME dynamics across systems. We hope that a synthesis of the surprisingly significant role played by MEs in the genome, as well as the spectrum of resolutions, applicable theory, and recent discoveries, will have two outcomes for future researchers: better parsing of known variation in ME proliferation patterns across genomes and the development of testable models and predictions regarding the evolutionary trajectory of MEs based on a combination of theory, the comparative method, experimental evolution, and empirical observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.