Abstract

Quantum Computing hopefully is the future of computing systems. It still on its first steps. The development of some quantum algorithms gives the quantum computing a boost on its importance. These algorithms (such as Shor’s and Grover’s algorithms) proved to have superior performance over classical algorithms [1-4]. The recent findings, that quantum error correction can be used, showed that the decoherence problem can be solved and hence the quantum computers can be realized [5-7]. The quantum algorithms are based on the use of special gates applied on one, two or more qubits (quantum bits). The classical computer uses different gates (NOT, AND, NAND, OR and XOR). Quantum gates are in many aspects different from classical gates where all gates must be reversible. This makes the quantum gates act as 2x2 transformation operators, where we have n input qubits and n output qubits. To understand the quantum bits and gates we describe the group of amplitudes that describes the state of a quantum register as a vector. A qubit with state 0 , which is

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.