Abstract

The awesome degree of structural diversity accessible in peptide design has created a demand for computational resources that can evaluate a multitude of candidate structures. In our specific case, we translate the peptide design problem to an optimization problem, and use evolutionary computation (EC) in tandem with docking to carry out a combinatorial search. However, the use of EC in huge search spaces with different optima may pose certain drawbacks. For example, EC is prone to focus a search in the first good region found. This is a problem not only because of the undesirable and automatic rejection of potentially good search space regions, but also because the found solution may be extremely difficult to synthesize chemically or may even be a false docking positive. In order to avoid rejecting potentially good solutions and to maximize the molecular diversity of the search, we have implemented evolutionary multimodal search techniques, as well as the molecular diversity metric needed by the multimodal algorithms to measure differences between various regions of the search space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.