Abstract

A genetic algorithm (GA), driven by experimentally determined biological activities as a feedback fitness function, was used to propose novel small molecules as inhibitors of glucose-6-phosphate translocase (G6PT) in iterative rounds of evolutionary optimization. A straightforward polymer-supported synthetic sequence was implemented to synthesize molecules proposed by the GA, and the biological activities of the compounds were determined by a microsomal assay. Additional compound design strategies were integrated, such as Tanimoto similarity-based selection of starting materials and transfer of favored structure elements into a new chemical scaffold to identify more active and selective inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.