Abstract

Watershed water cycles undergo profound changes under changing environments. Analyses of runoff evolution characteristics are fundamental to our understanding of the evolution of water cycles under changing environments. In this study, linear regression, moving average, Mann–Kendall, Pettitt, accumulative anomaly, STARS, wavelet analysis, and CEEMDAN methods were used to analyze the trends, mutations, and periodic and intrinsic dynamic patterns of runoff evolution using long-term historical data. The intra-annual distribution of runoff in the Dawen River Basin was uneven, with an overall decreasing trend and mutations in 1975–1976. The main periods of runoff were 1.9 and 2.2 years, and the strongest oscillations in the study period occurred in 1978–1983. The runoff decomposition high-frequency term (intra-annual fluctuation term) had a stronger fluctuation frequency, with a period of 0.51–0.55 years, while the low-frequency term (interannual fluctuation term) had a period of 1.55–2.26 years. The trend term for the runoff decomposition tended to decrease throughout the monitoring period and gradually stabilized at the end of the monitoring period, while the period gradually decreased from upstream to downstream. In summary, we used multiple methods to analyze the evolutionary characteristics of runoff, which are of great relevance to the adaptive management of water resources under changing environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call