Abstract

The aim of this study is to exploit the waste heat of a biomass-based solid oxide fuel cell (SOFC)–model (a)–in a gas turbine (GT) to enhance the power generation/exergy efficiency (model (b)). Moreover, surplus power which is generated by the GT is transferred to a proton exchange membrane electrolyzer (PEME) for hydrogen production (model (c)). Parametric study is performed to investigate the influence of the effective parameters on performance and economic indicators. Eventually, considering exergy efficiency and total product cost as the objective functions, the proposed models are optimized by multi-objective optimization method based on genetic algorithm. Accordingly, the optimum solution points are gathered as Pareto frontiers and subsequently favorable solution points are ascertained from exergy/economic standpoints. Results of parametric study indicate that model (b) is the best model as it has higher exergy efficiency and lower total product cost. Moreover, model (c) may be a more suitable model compared to the model (a) because of higher exergy efficiency and capability of hydrogen production. The results further show that, at the best final solution point, the exergy efficiency and total product cost of the model (b) would be 33.22% and 19.01 $/GJ, respectively. Corresponding values of exergy efficiency and total product cost of the model (c) are 32.3% and 20.1 $/GJ. Moreover, the rate of hydrogen production of the model (c) is 8.393 kg/day, at the best solution point. Overall, the integration methods are promising techniques for increasing exergy efficiency, reducing total product cost and also for hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call