Abstract

Plasmodesmata (PD) serve for the exchange of information in form of miRNA, proteins, and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis) PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (in)ability to form secondary PD is manifested in the symplasmic organization of the shoot apical meristem (SAM) which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplasmic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa.

Highlights

  • Plasmodesmata (PD) serve for the exchange of information in form of miRNA, proteins, and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin.There is convincing evidence that the ability to form secondary PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta

  • Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in shoot apical meristem (SAM) with symplasmic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa

  • The mechanism of primary PD formation strictly correlates with the mechanism of cell division: primary PD occur between cells which divide via the formation of a cell plate and not via furrowing (Stewart et al, 1973), with the possible exception of a few brown algae (Katsaros et al, 2009)

Read more

Summary

Introduction

Plasmodesmata (PD) serve for the exchange of information in form of miRNA, proteins, and mRNA between adjacent cells in the course of plant development. The (in)ability to form secondary PD is manifested in the symplasmic organization of the shoot apical meristem (SAM) which in most taxa of seedless vascular plants differs dramatically from that in seed plants.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.