Abstract
Vertebrate MyoD family of transcription factors contains four members including MyoD, Myf5, Myogenin and MRF4. These myogenic regulatory factors (MRFs) play key roles in regulating skeletal muscle development and growth. Evolutionary analysis suggests that the four vertebrate MRF genes were derived by gene duplications from a single ancestral gene during chordate evolution. Better understanding of the structure and regulation of MyoD expression in amphioxus Branchiostoma belcheri may provide insight into the evolutionary history of myogenic gene duplications because of the unique position of amphioxus in evolution. We report here that isolation and characterization of a new MyoD gene, AmphiMyoD, in B. belcheri. Sequence analysis revealed that the AmphiMyoD is more closely related to myogenic transcription factors in invertebrates and vertebrates compared with the previously identified three MyoD like genes in amphioxus, suggesting that the AmphiMyoD might be the closest relative of the ancestral myogenic gene. To determine if the AmphiMyoD gene promoter controls muscle-specific expression, the AmphiMyoD promoter was linked with the green fluorescence protein (GFP) reporter and the construct was microinjected into zebrafish embryos for transient expression assay. AmphiMyoD promoter directed skeletal muscle-specific GFP expression in zebrafish embryos. In addition, it also drove GFP expression in cardiac muscles of the injected embryos, but not in other non-muscle tissues. These data demonstrated that the AmphiMyoD promoter contained regulatory elements for skeletal and cardiac muscle-specific expression. Moreover, the regulatory element(s) could function across species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.