Abstract
The purpose of this study was to predict microemulsion structures by creating two artificial evolutionary neural networks (ANN) combined with a genetic algorithm. The first ANN would be able to determine the type of microemulsion from the desired composition, and the second to determine the type of microemulsion directly from a differential scanning calorimetry (DSC) curve. The algorithms and the structures for each ANN were constructed and programmed in C++ computer language. The ANNs had a feedforward structure with one hidden level and were trained using a genetic algorithm. DSC was used to determine the microemulsion type. The ANNs showed very encouraging accuracy in predicting the microemulsion type from its composition and also directly from the DSC curve. The percentage success, calculated over the tested data, was over 90%. This enabled us, with satisfactory accuracy, to construct several pseudoternary diagrams that could facilitate the selection of the microemulsion composition to obtain the optimal desired drug carrier. The ANN constructed here, enhanced with a genetic algorithm, is an effective tool for predicting the type of microemulsion. These findings provide the basis for reducing research time and development cost for characterizing microemulsion properties. Its application would stimulate the further development of such colloidal drug delivery systems, exploit their advantages and, to a certain extent, avoid their disadvantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.