Abstract

Placental malaria is a special form of malaria that causes up to 200,000 maternal and infant deaths every year. Previous studies show that two receptor molecules, hyaluronic acid and chondroitin sulphate A, are mediating the adhesion of parasite-infected erythrocytes in the placenta of patients, which is believed to be a key step in the pathogenesis of the disease. In this study, we aimed at identifying sites of malaria-induced adaptation by scanning for signatures of natural selection in 24 genes in the complete biosynthesis pathway of these two receptor molecules. We analyzed a total of 24 Mb of publicly available polymorphism data from the International HapMap project for three human populations with European, Asian and African ancestry, with the African population from a region of presently and historically high malaria prevalence. Using the methods based on allele frequency distributions, genetic differentiation between populations, and on long-range haplotype structure, we found only limited evidence for malaria-induced genetic adaptation in this set of genes in the African population; however, we identified one candidate gene with clear evidence of selection in the Asian population. Although historical exposure to malaria in this population cannot be ruled out, we speculate that it might be caused by other pathogens, as there is growing evidence that these molecules are important receptors in a variety of host-pathogen interactions. We propose to use the present methods in a systematic way to help identify candidate regions under positive selection as a consequence of malaria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.