Abstract

This article proposes an evolutionary algorithm integrating Erdős-Rényi complex networks to regulate population crossovers, enhancing candidate solution refinement across generations. In this context, the population is conceptualized as a set of interrelated solutions, resembling a complex network. The algorithm enhances solutions by introducing new connections between them, thereby influencing population dynamics and optimizing the problem-solving process. The study conducts experiments comparing four instances of the traditional optimization problem known as the Traveling Salesman Problem (TSP). These experiments employ the traditional evolutionary algorithm, alternative algorithms utilizing different types of complex networks, and the proposed algorithm. The findings suggest that the approach guided by an Erdős-Rényi dynamic network surpasses the performance of the other algorithms. The proposed model exhibits improved convergence rates and shorter execution times. Thus, strategies based on complex networks reveal that network characteristics provide valuable information for solving optimization problems. Therefore, complex networks can regulate the decision-making process, similar to optimizing problems. This work emphasizes that the network structure is crucial in adding value to decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.