Abstract

This paper considers the problem of scheduling part families and jobs within each part family in a flowshop manufacturing cell with sequence dependent family setups times where it is desired to minimize the makespan while processing parts (jobs) in each family together. Two evolutionary algorithms-a Genetic Algorithm and a Memetic Algorithm with local search-are proposed and empirically evaluated as to their effectiveness in finding optimal permutation schedules. The proposed algorithms use a compact representation for the solution and a hierarchically structured population where the number of possible neighborhoods is limited by dividing the population into clusters. In comparison to a Multi-Start procedure, solutions obtained by the proposed evolutionary algorithms were very close to the lower bounds for all problem instances. Moreover, the comparison against the previous best algorithm, a heuristic named CMD, indicated a considerable performance improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.