Abstract

Dynamic optimisation is an important area of application for evolutionary algorithms and other randomised search heuristics. Theoretical investigations are currently far behind practical successes. Addressing this deficiency a bi-stable dynamic optimisation problem is introduced and the performance of standard evolutionary algorithms and artificial immune systems is assessed. Deviating from the common theoretical perspective that concentrates on the expected time to find a global optimum (again) here the `any time performance' of the algorithms is analysed, i.e., the expected function value at each step. Basis for the analysis is the recently introduced perspective of fixed budget computations. Different dynamic scenarios are considered which are characterised by the length of the stable phases. For each scenario different population sizes are examined. It is shown that the evolutionary algorithms tend to have superior performance in almost all cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.