Abstract

The optimal management of type 2 diabetes (T2DM) is complex and involves an appropriate combination of diet, exercise, and different pharmacological treatments. Artificial intelligence-based tools have been shown to be very useful for the diagnosis and treatment of diverse pathologies, including diabetes. In the present study, we present a proof of concept of the potential of an evolutionary algorithm to optimize the meal size, timing and insulin dose for the control of glycemia. We found that an appropriate distribution of food intake throughout the day permits a reduction in the insulin dose required to maintain glycemia within the range recommended by the American Diabetes Association for patients with T2DM of a range of severities. Furthermore, the effects of restrictions to both the timing and amount of food ingested were assessed, and we found that an increase in the amount of insulin was required to control glycemia as dietary intake became more restricted. In the near future, the use of these computational tools should permit patients with T2DM to optimize their personal meal schedule and insulin dose, according to the severity of their diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.