Abstract
Our understanding of aposematism (the conspicuous signalling of a defence for the deterrence of predators) has advanced notably since its first observation in the late nineteenth century. Indeed, it extends the scope of a well-established game-theoretical model of this very same process both from the analytical standpoint (by considering regimes of varying background mortality and colony size) and from the practical standpoint (by assessing its efficacy and limitations in predicting the evolution of prey traits in finite simulated populations). The nature of the manuscript at hand is more mathematical and its aim is two-fold: first, to determine the relationship between evolutionarily stable levels of defence and signal strength under various regimes of background mortality and colony size. Second, to compare these predictions with simulations of finite prey populations that are subject to random local mutation. We compare the roles of absolute resident fitness, mutant fitness and stochasticity in the evolution of prey traits and discuss the importance of population size in the above.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.