Abstract
One of the key tenets of life-history theory is that reproduction and survival are linked and that they trade-off with each other. When dietary resources are limited, reduced reproduction with a concomitant increase in survival is commonly observed. It is often hypothesized that this dietary restriction effect results from strategically reduced investment in reproduction in favor of somatic maintenance to survive starvation periods until resources become plentiful again. We used experimental evolution to test this "waiting-for-the-good-times" hypothesis, which predicts that selection under sustained dietary restriction will favor increased investment in reproduction at the cost of survival because "good-times" never come. We assayed fecundity and survival of female Drosophila melanogaster fruit flies that had evolved for 50 generations on three different diets varying in protein content-low (classic dietary restriction diet), standard, and high-in a full-factorial design. High-diet females evolved overall increased fecundity but showed reduced survival on low and standard diets. Low-diet females evolved reduced survival on low diet without corresponding increase in reproduction. In general, there was little correspondence between the evolution of survival and fecundity across all dietary regimes. Our results contradict the hypothesis that resource reallocation between fecundity and somatic maintenance underpins life span extension under dietary restriction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.