Abstract

The interaction of a powerful, subpicosecond laser pulse with plasma is modeled within the capacitor model by means of one-dimensional electrostatic particle code. The temporal profile of the laser pulse and the growth of the electron energy by several orders of magnitude were taken into account providing adequate temporal and spatial resolution. It is shown that initially, a coherent structure is excited, and growth of plasma waves results in wave breaking and acceleration of electrons followed with decreasing intervals between them, accelerating electrons in both directions. Finally the system evolves to a state of moderate Langmuir turbulence where E2/(16πnT)≪1 due to the strong heating of plasma electrons and the decrease of excited plasma wave fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.