Abstract

AbstractThe kinetics of polymerization and depolymerization are critical in understanding the stability and characterization of polymers. The kinetics of simultaneous polymerization and degradation of poly(methyl methacrylate) have been investigated by varying the initiator concentration and monomer concentration under the influence of microwave energy. Microwave radiation initially polymerizes the monomer, then degrades the resulting polymer and the polymer attains an equilibrium molecular weight distribution with a polydispersity of two. To understand more fully the kinetics, the molecular weight distribution (MWD) is represented as a gamma distribution; the random degradation rate coefficient is assumed to vary linearly with molecular weight and the polymerization rate coefficient is assumed to be independent of molecular weight. The change of the MWD with time is studied by continuous distribution kinetics; the solutions obtained depict the change of the average molecular weight, polydispersity and the gamma distribution parameters with time. Experimental data indicate that reaction rates are enhanced by microwave radiation and the MWD approaches a similarity solution within 10 min for all the investigated cases. The model satisfactorily predicts the change of the MWD with time.© 2001 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.