Abstract

The "fitness" landscapes of genetic sequences are characterized by high dimensionality and "ruggedness" due to sign epistasis. Ascending from low to high fitness on such landscapes can be difficult because adaptive trajectories get stuck at low-fitness local peaks. Compounding matters, recent theoretical arguments have proposed that extremely long, winding adaptive paths may be required to reach even local peaks: a "maze-like" landscape topography. The extent to which peaks and mazes shape the mode and tempo of evolution is poorly understood, due to empirical limitations and the abstractness of many landscape models. We explore the prevalence, scale, and evolutionary consequences of landscape mazes in a biophysically grounded computational model of protein evolution that captures the "frustration" between "stability" and aggregation propensity. Our stability-aggregation landscape exhibits extensive sign epistasis and local peaks galore. Although this frequently obstructs adaptive ascent to high fitness and virtually eliminates reproducibility of evolutionary outcomes, many adaptive paths do successfully complete the ascent from low to high fitness, with hydrophobicity a critical mediator of success. These successful paths exhibit maze-like properties on a global landscape scale, in which taking an indirect path helps to avoid low-fitness local peaks. This delicate balance of "hard but possible" adaptation could occur more broadly in other biological settings where competing interactions and frustration are important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.