Abstract
The evolution properties of the normalized intensity distribution, the spectral degree of coherence (SDOC), and the spectral degree of polarization (SDOP) of the radially polarized multi-Gaussian Schell-model (MGSM) beam in uniaxial crystals are illustrated. Numerical results show that the intensity distribution of the radially polarized MGSM beam gradually evolves from a doughnut shape into an elliptical symmetric flattop shape and retains its elliptical flattop shape on further propagation in anisotropic crystals. The evolution behavior of the SDOC and SDOP for the radially polarized MGSM beam is quite different from that of the linearly polarized one. In addition, the influences of the spatial coherence length δ0, beam index M, and the ratio of the extraordinary refractive index to the ordinary refractive index ne/no of the uniaxial crystals on the evolution properties of the normalized intensity distribution, the SDOC, and the SDOP of the radially polarized MGSM beam are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.