Abstract
Based on the extended Huygens–Fresnel integral formula, the analytical expressions for partially coherent four-petal Gaussian beam propagating in oceanic turbulence are derived, and the influences of coherence length, beam order N and the parameters of oceanic turbulence (the rate of dissipation of turbulent kinetic energy per unit mass of fluid, the rate of dissipation of mean square temperature and the relative strength of temperature and salinity fluctuations) on average intensity properties are investigated using numerical examples in detail. The results show that the beam with the higher beam order N or coherence length will lose its initial four-petal profiles slower. It is also indicated that the beam will evolve into a Gauss-like beam more rapidly with increasing oceanic turbulence strength. The results have the potential application in underwater laser communication using a partially coherent four-petal Gaussian beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.