Abstract

Analytical expressions for the cross-spectral density matrix of a partially coherent twisted Laguerre-Gaussian pulsed (PCTLGP) beam in anisotropic atmospheric turbulence are derived based on the extended Huygens–Fresnel principle. Numerical results indicate that the atmospheric turbulence induces the degeneration of the spectral intensity distribution of the PCTLGP beam, and the PCTLGP beam also shows different evolution properties on propagation in weaker turbulence and stronger turbulence. The PCTLGP beam with a negative twisted factor exhibits an advantage over the Laguerre-Gaussian pulsed beam for reducing the atmospheric turbulence-induced degeneration, and this advantage is further strengthened with increasing the topological charge, mode order and absolute value of the twisted factor. In addition, we also find that the pulse duration will affect the spectral intensity of the PCTLGP beam in turbulence. This kind of beam will show potential application value in free-space optical communications and remote sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call