Abstract

The earliest eukaryotes were likely flagellates with a centriole that nucleates the centrosome, the microtubule-organizing center (MTOC) for nuclear division. The MTOC in higher fungi, which lack flagella, is the spindle pole body (SPB). Can we detect stages in centrosome evolution leading to the diversity of SPB forms observed in terrestrial fungi? Zygomycetous fungi, which consist of saprobes, symbionts, and parasites of animals and plants, are critical in answering the question, but nuclear division has been studied in only two of six clades. Ultrastructure of mitosis was studied in Coemansia reversa (Kickxellomycotina) germlings using cryofixation or chemical fixation. Character evolution was assessed by parsimony analysis, using a phylogenetic tree assembled from multigene analyses. At interphase the SPB consisted of two components: a cytoplasmic, electron-dense sphere containing a cylindrical structure with microtubules oriented nearly perpendicular to the nucleus and an intranuclear component appressed to the nuclear envelope. Markham's rotation was used to reinforce the image of the cylindrical structure and determine the probable number of microtubules as nine. The SPB duplicated early in mitosis and separated on the intact nuclear envelope. Nuclear division appears to be intranuclear with spindle and kinetochore microtubules interspersed with condensed chromatin. This is the sixth type of zygomycetous SPB, and the third type that suggests a modified centriolar component. Coemansia reversa retains SPB character states from an ancestral centriole intermediate between those of fungi with motile cells and other zygomycetous fungi and Dikarya.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.