Abstract

Evolutions of spherical X-ray clusters of galaxies are studied by using an N-body+total variation diminishing (TVD) mesh code. We consider a growth of density perturbation of 1015 M☉ composed of dark matter and gas in a cold dark matter-dominated universe with Ω0 = 1 or 0.2. When the perturbation collapsed at z ~ 1, a shock front appears at r ~ 0.1 Mpc, moving outward as ambient gas accretes toward cluster center. The shock front separates the inner X-ray-emitting, hot region from the outer cool region. In the former, gas is almost in hydrostatic equilibrium but with small radial infall (~100 km s-1) being left, while in the latter, gas falls almost freely and emits no X-rays. Gas inside the shock is strongly compressed and heated by shock so that X-ray luminosity rapidly rises in the early stage (until temperature reaches about virial). In the late stage, on the other hand, the X-ray luminosity rises only gradually due partly to the expansion of the inner high-temperature region and partly to the increase of X-ray emissivity of gas as the result of continuous adiabatic compression inside the shock. We also find that the density distribution is generally less concentrated in a lower density universe and, hence, X-ray luminosity rises more slowly than in a higher density universe. The shock front structure, which was not clearly resolved in the previous SPH simulations, is clearly captured by the present simulations. Our results confirm that shock heating plays an important role in the heating process of the intracluster medium. In addition, we find that a sound wave propagates outward, thereby producing modulations with amplitudes of ~10% in the radial temperature and density profiles which, in turn, cause time variations in the strength of the shock. Such modulations, if observed, could be used as a probe to investigate the internal structure of clusters and the initial temperature of gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.