Abstract

We investigate the redshift dependence of X-ray cluster scaling relations drawn from three hydrodynamic simulations of the ΛCDM cosmology: a model that incorporates radiative cooling of the gas, a Preheating model that additionally heats the gas uniformly at high redshift, and a model that self-consistently heats cold gas in proportion to its local star formation rate. While all three models are capable of reproducing the observed local LX-TX relation, they predict substantially different results at high redshift (to z = 1.5), with the Radiative, Preheating, and Feedback models predicting strongly positive, mildly positive, and mildly negative evolution, respectively. The physical explanation for these differences lies in the structure of the intracluster medium. All three models predict significant temperature fluctuations at any given radius due to the presence of cool subclumps and, in the case of the Feedback simulation, reheated gas. The mean gas temperature lies above the dynamical temperature of the halo for all models at z = 0, but differs between models at higher redshift, with the Radiative model having the lowest mean gas temperature at z = 1.5. We have not attempted to model the scaling relations in a manner that mimics the observational selection effects, nor has a consistent observational picture yet emerged. Nevertheless, evolution of the scaling relations promises to be a powerful probe of the physics of entropy generation in clusters. First indications are that early, widespread heating is favored over an extended period of heating, as is associated with galaxy formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.