Abstract

For the first time since Lord Kelvin's original conjectures of 1875 we address and study the time evolution of vortex knots in the context of the Euler equations. The vortex knot is given by a thin vortex filament in the shape of a torus knot [Tscr ]p,q (p>1, q>1; p, q co-prime integers). The time evolution is studied numerically by using the Biot–Savart (BS) induction law and the localized induction approximation (LIA) equation. Results obtained using the two methods are compared to each other and to the analytic stability analysis of Ricca (1993, 1995). The most interesting finding is that thin vortex knots which are unstable under the LIA have a greatly extended lifetime when the BS law is used. These results provide useful information for modelling complex structures by using elementary vortex knots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.