Abstract

The aim of this work is to develop a methodology to analyze the influence of the curing history on the viscoelastic storage modulus. Two different experimental approaches are presented exposing the material to various cure temperature and cure time sequences. The evolving viscoelastic properties are characterized using standard Dynamic Mechanical and Thermal Analysis (DMTA) equipment. Therefore, the present study is limited to infinitesimally small strains and linear viscoelasticity only. The methodology is demonstrated using the LY5052 epoxy resin system for its storage modulus E′ in the frequency domain. Results indicate that evolution of thermo-viscoelastic properties could be indeed assumed independent of the cure history for the investigated LY5052. We observe that the shift factor in the reduced time expression for the viscoelastic model examined in this paper is a product of two shift functions, namely the temperature and cure shift functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.