Abstract

The paper addresses the evolution of scientific views on the structure of the sources of strong earthquakes at the end of the 20th and beginning of the 21th century in Russia. The scientific concepts that emerged in the main developed countries initially typically lacked a clear and consistent understanding of the structure of sources of the strongest seismic events. In the 1950s, at the Schmidt Institute of Physics of the Earth of the USSR Academy of Sciences, G.A. Gamburtsev formulated a hypothesis of a long-term (a few hundred years) stability of seismic regime of a system of seismic sutures. The recently studied earthquakes have their sources in the regions of the large faults. The earthquakes of larger magnitudes have more extended and structurally more complex sources. Some sources in the considered cases are relatively simple to reconstruct (they encompass the fault planes of the large faults, e.g., the Spitak source, M = 6.8). Other sources are more complex; they are formed in the disjunctive nodes or encompass the crustal blocks. For example, the seismic source of the Altai earthquake (M = 7.3) has a volumetric structure and is developed along the boundaries of the large seismogenic blocks. The Wenchuan earthquake (M = 7.9) has a most complicated source which looks as a three-dimensional (3D) structure composed of a few crustal blocks framed by two extended northeast striking faults and separated by the northwesterly trending transverse fault. The structurally different sources differently manifest themselves in the pattern of seismic dislocations on the surface and in the distribution of aftershock hypocenters at depth. The anomalously low velocity “pockets” identified by local seismic tomography in the source areas of the Spitak and Altai earthquakes which accompany the main and secondary faults at depth are likely to be the zones of dynamic control of these faults. The breaked near-fault zones abundant with cracks and fractures are the severely looze inclusions in the crustal rocks hampering the propagation of seismic waves. Therefore, the P-waves in these pockets propagate at lower velocities than in the undamaged geological medium. The paleoseismological studies of seismic faults in trenches have shown that the strong earthquakes have occurred in the same sources in the past and the recurrence period of the strongest seismic events ranges from a few hundred to a few thousand years. Thus, the combined studies of the source zones of the strongest earthquakes conducted in the past decades in the different regions of Eurasia have shown that Gamburtsev’s hypothesis has remained relevant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.